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A theory for the reflection-transmission problem of linear water waves in shallow 
channels with large-amplitude, rapidly varying topographies is given in Nachbin & 
Papanicolaou (1992b). However, it is very difficult to extract quantitative information 
from the theory in the large-amplitude regime. In this work, theoretical parameters 
are evaluated numerically, through the use of a numerical Schwarz-Christoffel trans- 
formation and of a Monte Carlo simulation. This enables the theory to be applied to 
its full extent. As a result we calculate the localization length for any given type of 
random bottom topography. Additionally, the numerical conformal mapping provides 
further insight into depth effects arising from potential theory. Statistical results, for 
numerically generated reflected waves, are in very good agreement with the theory 
for both piecewise-linear and piecewise-constant topographies of large amplitude. 

1. Introduction. 
The interaction of surface gravity waves with a rough bottom topography has been 

analysed extensively in recent years. A wide range of experimental and theoretical 
research work have been reported, because of its importance in oceanography and 
in the development of new techniques for analysing scattering problems in fluid 
mechanics. 

In the context of applications, submerged obstacles can provide different mecha- 
nisms for the protection of coastal regions. In the periodic case, the phenomenon of 
Bragg reflection is of primary interest (see for example Guazzelli, Rey & Belzons 1992 
and references therein). For fully erodible beds, the Bragg resonance phenomenon 
may lead to the growth of new sandbars in the seaward direction (Guazzelli et 
al. 1992; O’Hare & Davies 1990 and references therein). Numerical experiments with 
periodic beds of large amplitude were performed by Dalrymple & Kirby (1986) using 
the boundary-element method. 

When the bottom topography has an arbitrary rapidly varying profile we have 
the phenomenon of localization. This is typical of linear waves propagating in a 
one-dimensional random media. Localization means that the transmission coefficient 
of a plane wave decays exponentially as a function of the length of the rough segment 
of the channel. This apparent attenuation phenomenon arises from the disordered 
multiple scattering of waves, and provides another mechanism for coastal protection. 

t Address for correspondence. 
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This has been observed in the laboratory experiments conducted by Belzons, Guazzelli 
& Parodi (1988). 

A review of ocean waves in random media is given by Mysak (1978). In particular, 
Hasselmann (1966) used the formalism of quantum field theory to describe the 
scattering of internal and surface waves by topographic irregularities in a stratified 
fluid. Both wave amplitudes and bottom displacements are considered small so that 
perturbation techniques are applicable. Long (1973) used Hasselmann’s (1966) theory 
in the homogeneous fluid case of surface waves alone and observed that the presence 
of a random topography could be sufficient to account for the swell decay, which was 
observed in the Joint North Sea Wave Project (JONSWAP). Long concludes that with 
the available data they were not able to prove that bottom scattering is the dominant 
process causing swell decay, but that the effect is of the right order. More details can 
be found in 0 4.3. 

More recently Devillard, Dunlop & Souillard (1988) considered the case of random 
piecewise-constant topographies and, by using a transfer matrix technique, estimated 
the localization length for time harmonic surface waves. They compare their results 
with the experiments of Belzons et al. (1988) and obtain good agreement over a band 
of wavenumbers. More details can be found in 0 4.3. 

In the present work we consider arbitrary rapidly varying topographies which 
implies 

1 
E * 

- - -  typical wavelength 
typical length scale for bottom irregularities 

We also assume the long-wave regime with 

typical depth 
typical wavelength 

typical amplitude 
typical depth 

= O(E) 

and linear theory with 

= O(E), 

for small E .  Using table 1.1 in Mei (1983) we have that a tsunami of period 10 minutes, 
propagating over the continental shelf (depth = 200 m) with shallow water speed 
(c = (gh)’ /*  = 44.27 m s-l) is 26.8 km long. Note that waves of 1 km or longer are 
in the long-wave regime and therefore interact with the topography. Rapidly varying 
features of the topography range from hundreds of metres to the kilometre scale, 
and with an amplitude of say 20 m the motion can be described by linear theory. 
In this regime the bottom is modelled as a random process, and we fall into the 
extensively studied area of wave propagation in random media. A very broad source 
of references, for different physical applications, can be found in Asch et al. (1991) 
and in Gredeskul & Kivshar (1992). 

To study water waves in random media Nachbin & Papanicolaou (1992b) developed 
a theory for the reflection-transmission problem, based on the asymptotic analysis of 
stochastic differential equations. This theory accounts for general bottom profiles of 
large amplitude and is not restricted to monochromatic waves. Pulse-shaped waves 
are also considered. 

No mild-slope restrictions are required, nor does the profile need to be approximated 
by piecewise flat segments. The theory has its limitations based on the fact that the 
free surface disturbances are of infinitesimal amplitude (i.e. linear theory), the fluid is 
considered inviscid, the flow is irrotational and the bottom is rigid. We also assume 
that the waves are long because the scattering of short waves has a negligible overall 
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effect. This is supported by the work of Devillard et al. (1988) and will be discussed 
in more detail in $4.3. Moreover there is evidence that potential theory provides 
a good model for the reflection-transmission problems. Recently Rey, Belzons & 
Guazzelli (1992) performed experiments on the propagation of linear and weakly 
nonlinear gravity waves over a rectangular submerged bar. They examined the effects 
arising from the finite amplitude of the surface wave and those coming from the 
generation of vorticity around the sharp edges of the topography. They concluded 
that a rounded corner can suppress vortex shedding but also that the rectangular 
bar’s corner has a small influence on the reflection coefficient as well as the wave 
amplitude over the bed. In conclusion, their study showed that weak nonlinearity and 
weak vorticity have only a small effect on the reflection coefficient results, which are 
in good agreement with linear potential theory. 

The results presented in Rey et al. (1992) support the use of potential theory to 
study the interaction between gravity waves and rough topographies, as well as to 
obtain estimates of the wave’s penetration depth into the random medium. The length 
scale related to the penetration depth is called the localization length. 

In Nachbin & Papanicolaou (1992b) numerical experiments were carried out in 
order to validate the asymptotic theory developed. Even though the theory is valid 
for O(1) depth variations, the results exhibited took into account only cases of 
topographies of moderate amplitude. When the amplitudes are large it is very 
difficult to extract quantitative information from the expressions provided by the 
theory. 

In this work we present an algorithm for calculating the effective parameter for 
scattering and the localization length defined in Nachbin & Papanicoloau (1992b). The 
numerical method is designed to accommodate arbitrary topography profiles, with no 
restriction on the amplitude nor on its smoothness. New numerical experiments are 
performed to show the wide range of validity of the stochastic theory. The agreement 
between theory and computation is very good. We also consider channels with the 
same scales as in Devillard et al. (1988). Our results are close to theirs for the band of 
wavenumbers where the localization phenomenon is the strongest, which is also where 
their results approximate well the wave tank experiments by Belzons et al. (1988). 

The formulation and background of the 
scattering problem, together with the theoretical results, are reviewed in $2. In $3 
a numerical Schwarz-Christoffel mapping is presented and we show how to use it 
in order to compute the relevant parameters defined by the stochastic theory (for 
example the localization length). Section 4 presents results comparing theory and 
computations. The expected value for the reflection coefficient, given in the theory, 
matches very well that obtained by a Monte Carlo simulation for wave propagation, 
using the boundary-element method. We close this section by comparing our results 
with those obtained by Devillard et al. (1988). Finally $5 contains the concluding 
remarks. 

The paper is organized as follows. 

2. Formulation and background of the scattering problem 
Consider gravity-driven surface waves, propagating in a shallow channel, in a 

regime where potential theory is applicable. The velocity potential @(x, y ,  t )  satisfies 
the linear equations (Whitham 1974): 
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with the free surface condition 

4tt = - g &  at Y = 0, 

the Neumann condition at the bottom 

h0 4y + - H'(x / lb )4 ,  = 0 along y = - hoH(X/lb) 
lb 

and the following initial conditions given at the free surface: 

x + cot 
and q5t(x,0,0) = 

t =o t=O 

The function f is smooth and has compact support in [O,co). The constant A has 
dimensions of length squared over time so that f is dimensionless. The bottom 
topography is described by y = -hoH(x/lb),  where 

1 + n(x/ lb)  when - L < x < 0 
H ( x / l b )  = { 1 when x d - L  or x 2 0 .  

We have introduced the length scales l p  (pulse width), ho (depth), lb (horizontal 
length scale for bottom irregularities) and L (total length of the rough region). The 
acceleration due to gravity is denoted by g and the reference shallow water speed 
is co = (gho)'I2. The bottom profile is a rapidly varying zero-mean random process 
n(x/ lb)  about the undisturbed depth y = -ho and such that In( < 1. Note that the 
depth fluctuations n(x/ lb)  are not necessarily small. 

The ratios of length scales identify the regime of interest in wave reflection when 
ordered by a small parameter E > 0: 

ho/lb = O( 1)  = Y h  (bottom irregularities are comparable to the depth), 

l p / l b  = y p / &  (incident pulse is broad compared to the bottom irregularities), 

L/lb = ~ L / E ~  (pulse penetrates in a long, rough channel). 

The parameters y h ,  y p  and y L  are of order one and are related to the microscopic, 
intermediate and macroscopic scales respectively. 

In order to formulate the reflection-transmission problem it is convenient to use 
dimensionless variables and to conformally map the rough channel onto a flat one. 
Details can be found in Nachbin & Papanicolaou (1992b). In the orthogonal curvi- 
linear variables (t,Q the equations have the form 

4tr + 4" = 0, -Yh < c < 0 

with the free surface condition 

the Neumann condition at the bottom 

& = 0 at c = - Y h ,  

and the initial conditions 
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given at the free surface. The new free surface coefficient 
related to the bottom irregularities through (Hamilton 1977; Nachbin & Papanicolaou 
1992b) 

In the limit as E goes to zero, the coefficient m( t )  is varying on an extremely fine 
scale, when compared to the rough channel’s macroscopic length scale. Therefore, 
this coefficient is considered to be a stochastic process. A system of stochastic 
differential equations is derived for the amplitudes of the propagating and evanescent 
modes, obtained from the eigenfunction decomposition of the time-harmonic velocity 
potential (Nachbin & Papanicolaou 1992b). The solution to these equations are 
characterized asymptotically as diffusion processes, through the application of a limit 
theorem for stochastic differential equations. Details of the stochastic theory can be 
found in Asch et al. (1991), Kohler(1977) and references therein. 

The stochastic theory, given in the references above, is valid when the rapidly 
varying random coefficient has mean zero. For topographies of moderate amplitude, 
as in the examples presented in Nachbin & Papanicolaou (1992b), the coefficient m ( t )  
is effectively a mean-zero function. In the large-amplitude situation this is not true. 
This is better seen with periodic topographies. An example will be presented in 0 4. 
To emphasize this aspect of the theory, we rewrite the free surface coefficient as 

4 5 )  = (4 + mo(t). (2.7) 

We define the average as 

and m(<) as the mean-zero part. We assume that the channel is long enough so that 
(m) is independent of the realization of the topography considered. This is based on 
the fact that the stochastic process is assumed to be ergodic. 

The free surface condition is written as 

where time has been rescaled by t’ = t /( l  + (m))’l2 and we have dropped the prime. 

Summary of theoretical results 
This section contains a brief summary of the results obtained in Nachbin & Papan- 
icolaou (19924. The expected value of the transmission coefficient, for an incident 
monochromatic wavetrain of frequency o, is obtained through the application of an 
asymptotic theory for the solution of stochastic differential equations. We repeat our 
results for convenience: 
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The formula above can be used to estimate how much transmission is obtained at the 
end of the rough region of the channel, once the effective parameter for scattering 

LW ~{mo(s)mo(O)lds (2.10) 
(1 + (mH2 

amm = 

is known. The phenomenon of localization is characterized through the exponential 
decay of the transmission coefficient as a function of the rough region's total length 
y ~ .  Using Laplace's method, the expected value of the transmission coefficient can be 
approximated for large values of y L / G :  

where the localization length G is given by 

(2.11) 

(2.12) 

The localization length G gives an idea of the wave's penetration depth into the random 
medium. For a given frequency o we can see how geometrical features of the channel 
affect the localization length through the parameters a,, and Y h .  The expression (2.11) 
is exactly the same as the one obtained for the linear Schrodinger equation with a 
random potential (cf. Gredeskul & Kivshar 1992). It also appears in Papanicolaou & 
Keller (1971) when waves propagate through a layer with random index of refraction. 
Devillard et al. (1988) analysed water waves in channels with random piecewise- 
constant topography and estimated the localization length numerically. 

For the propagation of a pulse we give the expected value for the reflection process 
(where E{R2(t)} = 1 - E { T 2 ( t ) } ) :  

(2.13) 

We point out that in the results above, only the correlation function of the random 
O( 1) depth perturbation plays a role in the final result, through the effective parameter 
for scattering am. Note that the initial pulse shape f is known (cf. (2.4)) with its 
Fourier transform given by 

m 

f(o) = e'"'f(7)dz. 

We can readily calculate the decay in time of the expected value of the reflection 
process, by numerical integration of the expression above. 

In Nachbin & Papanicolaou (1992b) we used the boundary-element method in the 
numerical study of reflection and transmission of long waves in shallow channels 
with irregular bottom topographies. For each realization of the bottom topography 
we allowed a Gaussian pulse (for the potential) to propagate over the rough region 
and we recorded the reflected signal, at a point xj close to the beginning of the rough 
region. We then computed the statistical properties of the numerical reflected signals. 
We graphed time-dependent curves for E { R 2 ( t ) )  and we compared them with the 
statistical properties of our numerical experiments. Namely we verify if 

. M  

(2.14) 
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when the number of realizations M is large enough. Each realization of the channel's 
topography is labelled by w,. We found good agreement between the theory and 
numerical computations for channels with moderate depth variations. 

As mentioned earlier, the theory given in Nachbin & Papanicolaou (1992b) is 
valid for large-amplitude bottom variations. Nevertheless it is extremely difficult to 
calculate analytically the effective parameter for scattering a,, in the large-amplitude 
case. In the following section we present an algorithm showing how to calculate the 
effective parameter for scattering, for any bottom configuration. 

3. Numerical method for finding effective parameters 
3.1. The numerical evaluation of the variable free surface coefJicient m(<) 

In this section an arbitrary symmetric channel, bounded by straight wall segments in 
the physical z-plane (z(<, c )  = x(<, c )  + iy(<, c ) ) ,  is mapped onto a straight channel 
in the computational w-plane (w = < + il). For the purpose of finding the Schwarz- 
Christoffel transformation (Ahlfors 1979; Henrici 1986) it is convenient to take the 
origin of the z-plane to be at the the first left-corner of the bottom topography, 
where it changes from flat to rough. The dimensionless water wave flow domain is 
such that the free surface is given by y = 1. For the geometry described we consider 
a transformation z(w), of the Schwarz-Christoffel type (Floryan 1985; Sridhar & 
Davies 1985), such that its derivative is given by 

N - (<,c)  dz = 5 n [sinh-(w-ai) 71 . 
dw Yh [=I 2Yh 1 

The flat channel in the non-physical w-plane has width Yh. The N unknown parameters 
a1 are the pre-images of the bottom topography's corners. Furthermore, the nai 
represent the turning angles at each corner (with pre-image a[). Their values are 
known and we use the convention that they are positive for the clockwise rotation 
when the boundary of the channel is traversed in the counterclockwise direction. 

By the Riemann mapping theorem (Ahlfors 1979) we know that the conformal 
mapping z(w) is uniquely defined once we choose the value of the scaling constant C 
(for simplicity we take C = hO/Yh = 1) and once we impose that the origins of the 
two planes coincide (namely z(0,O) = 0). 

From complex analysis we have that 

dz ay . ax - = -  
dw ac -'x* 

On the other hand, the change of variables for the water wave equations lead to the 
following variable coefficient in the free surface condition : 

By putting the expressions above together, straightforward algebra leads to a simple 
formula for the variable free surface coefficient m(<) : 

N [cosh ,(< 71 - a[) ] ' )  - 1. 

The coefficient m(<) can be easily evaluated, at any given point along the free surface, 
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once the pre-images al, 1 = 1, ..., N are known. The free surface coefficient m(<) is 
written in a way that avoids the numerical evaluation of fractional powers of complex 
numbers. Hence we do not have to worry about keeping track of branch points. 

The N unknown parameters a1 are determined by a method of successive approx- 
imations. A simple iteration scheme is presented in Floryan (1985) and Sridhar & 
Davies (1985). The basic underlying strategy is to find values of the pre-images of 
the corners, so that the length of each straight wall segment satisfies 

Superscripts indicate the vth iterated value for each corner's pre-image and its 
corresponding location z;') in the physical plane. The values z:") are obtained by a 
specially devised numerical quadrature, that allows the integration of (3.1) across the 
singularities located at corners with negative values of a[. Details are given in Floryan 
(1985) and Sridhar & Davies (1985). 

The iteration scheme takes into account the fact that the origins of the two planes 
coincide. This implies that z1 = a1 = 0 at all stages of the iterative scheme. All the 
other corners are to the right of z1 and their pre-images are obtained successively by 
using 

Left-right sweeps for the values of the pre-images are done successively, using (3.3), 
until convergence is achieved. When there are no discontinuities along the bottom 
topography, we take as the initial guess for each parameter a1 the value a?) = XI. For 
topographies with discontinuities, we take a?) to be the length of the wall segment 
ending at zr. 

We should point out that the method given in Floryan (1985) can be extended 
(cf. his $3) to channels with curved wall segments. Nevertheless we restricted our 
numerical experiments to cases where the channel had straight wall segments, since 
that is the optimal configuration for the boundary-element method to vectorize on a 
supercomputer (cf. Nachbin 1993 ; Nachbin & Papanicolaou 1992a, $2). 

Regarding the convergence of the Schwarz-Christoffel code, it can take up to 30 
iterations depending on the size of the topography's amplitude. One way of improving 
the performance of the numerical conformal mapping technique is by using the fast 
method proposed in O'Donnel & Rokhlin (1989). 

3.2. The numerical evaluation of the correlation function E{m(s)m(O)} and of the 

The correlation function of the free surface coefficient is obtained by a Monte Carlo 
simulation. Samples of random bottom topographies are created using a random 
number generator. Each realization of the topography (labelled by co,) is conformally 
mapped through the numerical Schwarz-Christoffel transformation. Using (3.2) and 
a set of P equally spaced points along the mapped free surface (with spacing A < )  we 
have 

localization length / 

N [cosh 5(<, 71 - a,)] 
- 1 - (m) ,  j = 1 ,..., P .  (3.4) 
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The average (m) is computed using the trapezoidal rule. The correlation function is 
evaluated, over the equally spaced points, as follows: 

The notation is such that E M C  is the expected value computed through a Monte 
Carlo simulation using M realizations, p a  indicates the number of the first point and 
p b  of the last point of m(()  considered in calculating the correlation function. Pab  is 
the total number of points utilized ( P a b  = p b  - p a  + 1 - j ) .  It is convenient to take 
p a  and Pb so that &, and (p+j  are away from the ends of the rough region. Note 
that (2.6) shows how the (deterministic) flat region can affect non-zero values of m ( ( )  
depending on the effective width of the kernel. 

The effective parameter for scattering is obtained by integrating the correlation func- 
tion using the trapezoidal rule. The correlation function is monotonically decreasing, 
so we complete the improper integration as soon as the integrand is approximately 
zero. For best results, we use several different points p a  and p b .  As these points 
are moved away from the ends, CI,, grows and then oscillates about a certain value, 
which we take to be its final value. Finally, the localization length is found by using 
(2.12). 

4. Results for large-amplitude depth variations and comparison with the 
theory 

4.1. Periodic bottom topographies 
The numerical conformal mapping of periodic channels is carried out. The examples 
given below improve our insight into the effect of having channels with small but 
finite depth. long-wave theory), the 
topography is felt along the free surface as a smooth obstruction. This can be seen 
from expression (2.6) and in the figures below, generated by the numerical conformal 
mapping technique. 

Consider a rough periodic segment of length 30 units, having triangles of base 
equal to 2 length units and height 0.6 units. Note that the depth variations are of 
large amplitude. Figure 1 superimposes the original bottom’s polygonal profile n(x )  
and the variable free surface coefficient m(() .  The horizontal x- and (-coordinates 
are on different scales since the channel is ‘stretched’ during the Schwarz-Christoffel 
mapping. We can clearly see the (smoothing) depth-effect predicted by (2.6). 

In Nachbin & Papanicolaou (1992a) no reflection is observed when long waves 
propagate over rapidly varying periodic topographies. This result is not surprising. 
The reflection-transmission problem can be formulated as a system of ordinary 
differential equations (a matrix Riccati equation; cf. Nachbin & Papanicolaou 1992b) 
with periodic coefficients, and the method of averaging can be used to show that, in 
the limit as the bottom’s period goes to zero, no reflection is observed. 

However, the conformal mapping technique shows that an additional ingredient 
plays a role in the averaging process: the channel’s depth. There is a horizontal 
and a vertical length scale playing a role in what we will call the homogenization 
(i.e. averaging) of the periodic bottom. The term homogenization is borrowed from 
the field of composite materials, where waves propagating in materials with rapidly 
varying inhomogeneities behave as if they were travelling in a homogeneous material 
having an effective conductivity different from that of the pure material. Therefore 

As opposed to the infinitesimal case (i.e. 
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FIGURE 1. Comparison between the polygonal topography profile n(x)  and the variable 
free surface coefficient rn(t). 
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FIGURE 2. The homogenization effect for the variable free surface coefficient rn(t). The bottom 
irregularities are on the length scale (a) lb = 1.0 and (b)  lb = 0.5. 

in such a regime, the long water wave will feel the periodic region as an effectively 
flat one. To be more precise, there will be a quick transition from the originally 
flat region where m(5) = 0, to the effectively flat region where m(5) w non-zero 
constant. These two flat regions are analogous to two homogeneous materials having 
different conductivities (Nachbin & Papanicolaou 1992a). The effect of the vertical 
and horizontal length scales can be visualized in figure 2. The periodic topography 
now has triangles with bases of 1.0 and 0.5 length units respectively. The bottom is 
felt at free surface level through the coefficient m(5). The homogenization effect is 
evident. Very quickly the corrugations of m(5) decrease in amplitude and when seen 
from the free surface the topography becomes effectively a smooth step. Hence, as 
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FIGURE 3. A mean-zero polygonal topography n ( x )  gives rise to a non-mean-zero 
free surface coefficient m ( 0 .  

expected, when a long wave propagates over the rapidly varying region no reflection 
is observed. Nevertheless, it will propagate with an effective shallow water speed (in 
analogy with effective conductivity) smaller than the standard shallow water speed, as 
predicted by Rosales & Papanicolaou (1983), and observed numerically by Nachbin 
& Papanicolaou (19924. 

The final experiment with periodic bottoms considers a mean-zero topography. It is 
well known that the effect of disturbances along the border of a domain, where we are 
solving for a harmonic function, decays exponentially fast towards the interior. For 
example, in a channel with a flat bottom the harmonic extension of disturbances like 
cos(x - t) (along the free surface y = 0) is obtained by multiplying it by cosh(h, + y ) .  
An analogous situation takes place in the conformal mapping problem which also 
deals with harmonic functions (cf. the problem given by ( l l ) ,  (12) in Nachbin & 
Papanicolaou 1992b). In this purely geometrical problem the presence of the valleys 
of the topography are felt, along the free surface, in a (exponentially) weaker form 
than the summits. A manifestation of this fact is that the free surface coefficient m(5) 
is not mean-zero even though the botton profile n(x)  is. Therefore, the topography is 
seen from the free surface as a step superimposed with small periodic corrugations 
(cf. figure 3). 

We summarize the discussion above by relating it more closely to the (physical) 
context of water waves. First we should note that two problems are being considered. 
A dynamical problem of surface waves interacting with a bottom topography and a 
geometrical problem (i.e. the conformal mapping) from which we gain insight into how 
the bottom topography is seen from the free surface y = 0, through the coefficient 
m(5). As mentioned above, no effective reflection is observed for the (dynamical) 
problem of a long wave propagating over a rapidly varying periodic topography 
(Nachbin & Papanicolaou 1992~). This is expected since the wave cannot feel the 
inhomogeneities of the medium (i.e. the depth variations) in detail. We pointed out 
that the conformal mapping shows how the length scale associated with the depth also 
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FIGURE 4. Comparison between n(x)  and m(5) for a (a) piecewise-linear random topography and 
( b )  piecewise-constant random topography. 

participates in this averaging phenomenon. All the results of the conformal mapping 
(cf. figures 1, 3 and 4) show that the free surface coefficient has little sensitivity to 
details, and in particular to the valleys, of the submerged topography. A possible 
physical interpretation of this fact is that we have an added-mass-type phenomenon 
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in the deeper regions of the valleys. These regions are not felt in detail from the free 
surface, and for the reflection-transmission problem can be considered as part of the 
submerged obstacles. 

We will show in the next subsection that the geometrical smoothing features 
discussed above are also true for random topographies. We started with the periodic 
case because it is easier to visualize. Nevertheless there is a crucial difference between 
rapidly varying periodic and random topographies, when we look at the dynamical 
problem of wave propagation. The averaging argument does not work for random 
topographies. The disordered nature of the scattering phenomenon will have a 
cummulative effect, when the random medium is long enough. The residual effect of 
disordered scattering is precisely the phenomenon of localization. 

4.2. Random bottom topographies 
For the numerical experiments we consider both random piecewise-linear and random 
piecewise-constant topography profiles. The latter are of the same type as the profiles 
used in the laboratory experiments by Belzons et al. (1988) and the theory by Devillard 
et al. (1988). In figure 4, n(x) and m(<) are graphed together, for two short (prototype) 
channels, so that the smoothing and added-mass effects, discussed in 94.1 above, can 
be visualized. 

This section contains results of two sets of Monte Carlo simulations of different 
nature. One set of simulations is done to compute a purely geometrical quantity, 
namely the correlation function for the free surface coefficient m(<). The main 
objective is to compute the effective parameter for scattering CI,, and the localization 
length 8 defined in the theory. The Monte Carlo method makes use of the numerical 
Schwarz-Christoffel mapping described in 93. 

The second set of Monte Carlo simulations is a dynamical one. It makes use of 
the boundary-element method to generate reflected waves. We compute statistical 
properties of these waves and compare with theoretical results. Details are given in 
Nachbin & Papanicolaou (1992a,b). 

At this point we should pause to note that three problems come together, each 
having a scaling adequate for the analysis performed. The first one is the analytical 
study having the microscopic, intermediate and macroscopic scales as given in 9 2. 
The second is the conformal mapping problem which, for convenience, maps a flat 
strip of unit width onto a corrugated one also of unit width. Finally we have the 
numerical problem which is formulated in the (standard) dimensionless variables 
(Nachbin & Papanicolaou 1992a; Whitham 1974) which lead to the definition of the 
dispersion parameter B = ho/A. The typical wavelength is given by A. This is the most 
convenient set-up for the boundary-element method, in order for it to capture several 
features of wave propagation in rough channels. A numerical dispersion study is 
given in Nachbin & Papanicolaou (19924 and a series of experiments are presented 
in Nachbin & Papanicolaou (1992a,b). 

In order to make the procedure of matching the theoretical results with computa- 
tions as simple (and systematic) as possible, we present a summary of the different 
scalings considered. In the asymptotic theory the result is given with respect to a 
reference pulse of unit width. As mentioned above, we always take the Schwarz- 
Christoffel mapping to be such that the flat channel is of unit depth. Therefore we 
must find the corresponding length scale &, for the depth variations. The following 
set of correspondences are useful : 

(a) In the stochastic theory the problem is scaled so that the pulse width is one. 
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We call the corresponding depth h* and topography length scale li, where 

and 
1; = lb/t!p.  

( b )  For the Schwarz-Christoffel problem we have 

h* I--, 1, 1; W &,. 

Using the relations above and making the correspondence between the scales used 
in the conformal mapping, analytical and computational parts of this work, it turns 
out that the corresponding bottom's characteristic length, in the conformal mapping 
problem, should be - 

lb  = l b / ( l p P ) .  

Let the physical problem of interest be such that the topography variations are 
on the length scale l b ,  the wave pulse is of width l p  and with dispersion coefficient 
b. The typical channel to be mapped by the Schwarz-Christoffel code has a rough 
topography of average depth equal to one, varying on a horizontal length scale equal 

Once the Monte Carlo simulation for E{m,,(s)rno(O)} has converged to an acceptable 
value, the result has to be rescaled back so that the theoretical and numerical 
expressions for E { R 2 ( t ) }  are in the same scale: 

to Tb. 

1 r m  

where EMC denotes the expected value obtained by the Monte Carlo method. The 
trapezoidal rule is used for the integration, which needs only a few points since the 
correlation function decays to zero very fast. 

The observation concerning the rapid decay of EMc is very important in terms of 
numerical efficiency. Short channels can be used in the Schwarz&hristoffel, Monte 
Carlo simulations without any loss of generality. Figure 5 shows the coefficient m(5) 
for two channels, one being twice as long as the other but having exactly the same 
profile over its first half. Both coefficients m(5) agree very well almost up to the end 
of the shorter channel. Although in the boundary-element method we use very long 
channels, the parameter a,, can be computed using much shorter ones. 

We proceed to present results comparing theory and computations. The numerical 
experiments were designed to provide evidence of the wide range of applicability 
(regarding general bottom configurations) of the theory developed in Nachbin & 
Papanicolaou (1992b). Different classes of bottom profiles with large-amplitude 
perturbations are considered. Several parameters are allowed to vary, including the 
dispersion parameter P. 

We start with Monte Carlo simulations for piecewise-linear profiles of large ampli- 
tude (6 = 0.6). The geometry is such that lb  = ho = 0.1, l p  = 1.0, the rough segment 
of the channel is 20 units long, P = 0.08 and the numerical solution is computed over 
an interval of 45 time units. The Schwarz-Christoffel code gives a,, = 0.0066, where 
'ib = 1.25 and h* = P. The localization length is t! = 303.03/w2. In figure 6(a) we can 
see the agreement between theory (60 realizations) and computations (60 realizations). 

To reinforce our statement that the theoretical results apply to general topographies, 
we consider piecewise-constant profiles (6 = 0.5). The parameters used were lb  = ho = 
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FIGURE 5. Comparison between the free surface coefficients m(5) of two channels, where one is 
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FIGURE 6. Comparison between theory (60 realizations) and computations (60 realizations) for 
(a )  piecewise-linear topographies of amplitude 6 = 0.6; (b )  piecewise-constant topographies of 
amplitude 6 = 0.5. 

0.1, 1, = 1.0, the rough segment is 30 units long, f l  = 0.1 and the numerical solution 
is computed over an interval of 65 time units. Using 'ib = 1.0 and h* = 0.1 the 
numerical conformal mapping code gave a,, = 0.0051. The localization length 
is L' = 392.16/02. In figure 6(b) we present the agreement between theory (45 
realizations) and computations (60 realizations). A few profiles sampled failed to 
converge for the Schwarz-Christoffel method. We believe that this was due to the 
well-known 'crowding problem' in conformal mapping (cf. Howell & Trefethen 1990). 
We discarded these problematic samples (about 10% of the total) and generated some 
additional ones. 
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An interesting experiment is to compare the localization lengths for piecewise- 
constant and piecewise-linear topographies having the same characteristics, that is, 
6 = 0.5, lb = ho = 0.1, lp = 1.0, the rough segment is 30 units long and = 0.1. 
We recall that for piecewise-constant profiles the numerical conformal mapping code 
gave am, = 0.0051 and the localization length is l = 392.16/02. Now for piecewise- 
linear profiles the numerical conformal mapping code gives a,, = 0.0039 and the 
localization length is l = 512.82/w2. Therefore the localization length for piecewise- 
linear profiles is 30% larger than for piecewise-constant ones. This is expected since 
submerged obstacles with vertical walls generate more reflection than if they had 
inclined walls. Note that over each subinterval of length lb we have a submerged 
obstacle: a triangular protuberance (or depression) in the piecewise-linear case or a 
rectangular protuberance (or depression) in the piecewise-constant case. Note also that 
9 10.3 of Nachbin & Papanicolaou (1992b) has a calculation (for the small-amplitude 
case) showing that if we increase the slope of the bottom then the parameter mmm also 
increases. Therefore, there is less transmission in the piecewise-constant case, which 
is analogous to having a smaller localization length. Dividing the localization length 
by the length scale of the obstacles (i.e. l b )  gives an idea of how many obstacles of 
random height will effectively participate in the multiple scattering of water waves 
before their amplitudes are negligible. 

4.3. Comparison with related work 
We close this section by comparing our theory with related work (Belzons et al. 1988 
and Devillard et al. 1988; Hasselmann 1966 and Long 1973). We start by briefly 
describing their results. 

In their theoretical study, Devillard et al. (1988) considered both shallow water 
theory and potential theory, together with a transfer matrix technique, to estimate the 
localization length for water waves propagating over piecewise-constant topographies. 
The topography is such that the wide-spacing approximation is valid, that is the mean 
length of the steps is much greater than the height of the water. In the long-wave 
regime shallow water theory and potential theory agree, and the localization length 
behaves like l - 1/02, for w + 0 (cf. Devillard et al. 1988, pp. 525, 532). In 
the short-wave regime, the potential theory analysis (shallow water theory is not 
valid) gives that the localization length diverges exponentially (cf. Devillard et al. 
1988, p. 532 and Appendix) which means that the interaction with the topography 
is extremely weak. Their time-harmonic theory is not restricted to any wavelength 
and the localization length is computed numerically as ‘the inverse of the Lyapunov 
exponent associated with the products of the renormalized transfer matrices’. 

As mentioned in the introduction, Hasselmann (1966) used the formalism of 
quantum field theory to describe the scattering of internal and surface waves by 
topographic irregularities in a stratified fluid. The theory provides the time rate of 
change of a wave spectrum as a linear functional of the spectrum of the bottom 
irregularities with coupling coefficients determined by the eigenfunctions of the linear 
flat bottom problem. In deriving this functional, heuristic interaction rules are 
assumed and Hasselmann (1966) formulates a statistical energy transfer process. The 
expressions for the transfer processes can be interpreted in terms of collision processes 
and therefore resemble Boltzmann integrals for interacting particles (cf. Hasselmann 
1966, $3). Both wave amplitudes and bottom displacements are considered small 
so that perturbation techniques are applicable. Long (1973) calculated the coupling 
coefficients, given by Hasselmann (1966), for the homogeneous fluid case of surface 
waves alone and concluded that the presence of a random topography could be 
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sufficient to account for swell decay (see also Mysak 1978). The swell decay in time 
is characterized by the solution of a transport equation, which gives the evolution of 
the wave spectrum (cf. Long 1973, (7)). Their theory for swell decay does not furnish 
any length scale that could be used to compare with the localization length obtained 
by other authors. 

We will now show that our theory is consistent with the findings of Devillard 
et al. (1988). Recall that Belzons et al. (1988) validated their results in a series of 
wave tank experiments. They considered monochromatic waves propagating over 
piecewise-constant topographies, with no restriction on the wavelength. 

Our main goal is to study pulse-shaped waves propagating over arbitrary rapidly 
varying topographies. The pulse width is such that the bulk of its spectrum is in 
the long-wave regime. Moreover, the high end of the spectrum has a very weak 
interaction with the bottom topography, as expressed by the exponential divergence 
of the localization length given in Devillard et al. (1988). These modes also have 
exponentially small amplitudes. We have concentrated our analysis on long waves 
and scaled accordingly. This is a mild restriction and our theory leads to a quadratic 
dependence of the localization length in terms of the frequency, as in Devillard 
et al. (1988). We are able to calculate the corresponding constant: / = C/w2,  
where the constant C is 2y~/a,,. Note that we can take into account different 
kinds of topography profiles (piecewise-constant, piecewise-linear, etc ...) through the 
parameter amm. 

Additional evidence that our results are consistent with previous work is given in 
the following experiments, which use the same length scales as in (Devillard et al. 1988, 
figure 5) .  We consider piecewise-constant profiles of large amplitude (6 = 5/7 NN 0.71) 
having a correlation length of lb = 16/7 = 2.29. We performed three different Monte 
Carlo experiments with our Schwarz-Christoffel code. In the first set we keep the 
horizontal length scale of the random steps fixed (at 2.29), and we take 60 realizations 
having 30 steps, each. Owing to the crowding problem only 1/3 of the realizations 
converge under the iterative conformal mapping scheme. This might lead to a biased 
result. Nevertheless we proceed with our calculation and get amm = 0.0672 and 
8 = 0.753(A/1b)2. Hoping to obtain a better convergence rate we map a series of 
channels that are not so elongated. Our second set of Monte Carlo experiments uses 
60 realizations of channels having 16 random steps each. We now obtain 50% of 
convergence, with a,, = 0.0616 and zf = 0.823(A./lb)2. Finally we allow the length of 
the steps (as well as the heights) to be random, as in Devillard et al. (1988). In other 
words we allow the length of the steps to be uniformly distributed in [0.51b, 1.5lb]. 
Certain samples might violate the wide-spacing assumption, but this was the scale 
adopted by the authors above. The third set of Monte Carlo experiments uses 60 
realizations of channels having 16 random steps each. Again we get 50% convergence 
with a = 0.0563 and zf = 0.899(A./1b)2. 

The agreement between the three sets of experiments and the results by Devillard 
et al. (1988) is good. In figure 7 we compare the curves 

given by the three experiments above, with five values obtained from figure 5 in 
Devillard et al. (1988). The wavelengths chosen are related to the band of frequencies 
where the results of the wave tank experiments of Belzons et al. (1988) (cf. figure 15 
therein) are close to the theory of Devillard et al. (1988). 

Finally we point out that the localization length is a length scale defined for 
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111, 
FIGURE 7. Comparison with the results of Devillard et al. (1988): (a) (experiment 1) G = 0.753(k/lb)2); 
(b )  (experiment 2) G = 0.823(k/lb)’); (c )  (experiment 3) G = 0.899(n/lb)’). The vertical bars are 
obtained from figure 5 in Devillard et al. (1988). 

time-harmonic (monochromatic) waves. Nevertheless the theory given in Nachbin & 
Papanicolaou (19925) applies also to pulse-shaped waves. It predicts the expected 
value of the, now, time-dependent reflection coefficient. The rate at which it decays 
in time depends on the effective parameter for scattering amm (cf. (2.13)). Long (1973) 
studies the time decay in Fourier space, that is of the wave spectrum, while we look 
at the time decay of the reflection coefficient. 

5. Concluding remarks 
The theoretical results for the reflection-transmission problem of linear water 

waves in shallow channels obtained in Nachbin & Papanicolaou (19923) can now be 
applied to their full extent, that is to consider large-amplitude bottom topographies 
with different types of random profiles. The use of a numerical Schwarz-Christoffel 
transformation enabled the evaluation of parameters defined in the asymptotic theory, 
for several bottom configurations. No restrictions such as mild-slope topographies are 
required, nor does the bottom have to be discretized into piecewise-constant segments. 

The following results are given. First, the localization length for both piecewise- 
linear and piecewise-constant bottom profiles are calculated. In terms of applications, 
the localization length gives the rate of (exponential) decay of the waves’ amplitude, as 
it propagates over long random topographies. Secondly, reflected waves are generated 
numerically, using the boundary-element method, and their statistics (i.e. E (R2} )  
agree very well with theoretical results. Finally, our results are compared with the 
work of Devillard et ul. (1988). 

The conformal mapping technique also provides further insight into the multiple- 
scattering problem, when water wave propagation is modelled using potential theory. 
This method permits the visualization of depth effects through the mapping of a polyg- 
onal bottom topography onto a smooth variable free surface coefficient. As the bottom 
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varies on a shorter scale the homogenization effect becomes evident. For example, a 
rapidly varying periodic bottom is viewed, from the free surface, as a smooth step. 
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